Thermal conductivity of high performance carbon nanotube yarn-like fibers

نویسندگان

  • Eric Mayhew
  • Vikas Prakash
چکیده

Articles you may be interested in Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite Appl. Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites Appl. Effective multifunctionality of poly(p-phenylene sulfide) nanocomposites filled with different amounts of carbon nanotubes, graphite and short carbon fibers AIP Conf. In the present paper, we present results of thermal conductivity measurements in free standing carbon nanotube (CNT) yarn-like fibers. The measurements are made using a T-type experimental configuration utilizing a Wollaston-wire hot probe inside a scanning electron microscope. In this technique, a suspended platinum wire is used both as a heater and a thermal sensor. A low frequency alternating current source is used to heat the probe wire while the third harmonic voltage across the wire is measured by a lock-in amplifier. The conductivity is deduced from an analytical model that relates the drop in the spatially averaged temperature of the wire to that of the sample. The average thermal conductivity of the neat CNT fibers and the CNT –polymer composite fibers is found to be 448 W/m-K and 225 W/m-K, respectively. These values for conductivity are amongst the highest measured for CNT yarn-like fibers fabricated using a dry spinning process from vertically aligned CNT arrays. The enhancement in thermal conductivity is understood to be due to an increase in the CNT fiber elastic stiffness during the draw and twist operations, lower CNT thermal contact resistance due to increase in CNT contact area, and better alignment of the CNT fibrils along the length of the fiber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors

Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the gal...

متن کامل

An Improvement in Thermal and Rheological Properties of Water-based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)

Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT) well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially ...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

Synthesis and investigation of thermal conductivity carbon nanotubes: MWCNT and SWCNT

In this study, Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have ...

متن کامل

A model for the strength of yarn-like carbon nanotube fibers.

A model for the strength of pure carbon nanotube (CNT) fibers is derived and parametrized using experimental data and computational simulations. The model points to the parameters of the subunits that must be optimized in order to produce improvements in the strength of the macroscopic CNT fiber, primarily nanotube length and shear strength between CNTs. Fractography analysis of the CNT fibers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014